Կինեմատիկա և Դինամիկա

Դինամիկա

Դինամիկա (հունարեն՝ δύναηις — ուժ), մեխանիկայի բաժին, ուսումնասիրում է մեխանիկական համակարգի շարժման կախումը նրա վրա ազդող ուժերից։ Ցուրաքանչյուր մեխանիկական համակարգի շարժումը բնութագրվում է իներտությամբ և ազդող ուժերով։ Նյութական կետոի իներտությունը որոշվում է կետի «ա» զանգվածով, իսկ մարմնինը՝ M գումարային զանգվածով (համընթաց շարժման դեպքում) և մարմնի զբաղեցրած ծավալում զանգվածի բաշխմամբ ու պտտման առանցքի նկատմամբ մարմնի իներցիայի մոմենտով (պտտական շարժման դեպքում)։ Լույսի արագությանը մոտ արագությամբ շարժվող մարմինների շարժումներն ուսումնասիրում է հարաբերականության տեսությունը, տարրական մասնիկներինը՝ քվանտային մեխանիկան, իսկ լույսի արագությունից զգալիորեն փոքր արագությամբ շարժվող մարմինների շարժումները՝ դասական «դինամիկա»։ Վերջինիս հիմքում ընկած են Իսահակ Նյուտոնի երեք օրենքները, որոնցից ստացվում են դինամիկայի խնդիրների լուծման համար անհրաժեշտ բոլոր հավասարումներն ու թեորեմները։ Դինամիկայի խնդիրները երկու դասի են։ Առաջին դասի խնդիրներում պահանջվում է որոշել մարմնի վրա ազդող ուժերը, եթե հայտնի է մարմնի շարժման օրենքը։ Այդպիսի խնդրի դասական օրինակ է ւոի եզերական ձգողության օրենքը։ Տեխնիկայում նմանօրինակ խնդիր է շարժվող մարմինների կապերի հակազդումները որոշելը։ Երկրորդ դասի խնդիրներում (Դինամիկայի հիմնական խնդիրներ) պահանջվում է որոշել մարմնի շարժման օրենքը, եթե հայտնի են նրա վրա ազդող ուժերը և սկզբնական պայմաննևրը (մարմնի դիրքը և արագությունը շարժումն սկսելու պահին)։ Օրինակ՝ իմանալով արկի արագությունը փողից դուրս գալու պահին (սկզբնական արագություն) ն շարժման ընթացքում արկի վրա ազդող ծանրության ու օդի դիմադրության ուժերը, կարելի է որոշել արկի շարժման օրենքը, մասնավորապես, հետագիծը, թռիչքի հորիզոնական հեռավորությունը, մինչև նպատակակետը շարժվելու ժամանակամիջոցը ևն։

Մեխանիկական տարբեր համակարգերի, ինչպես նաև ոչհամընթաց շարժվող պինդ մարմինների շարժումները նկարագրող հավասարումները ստացվում են դինամիկայի հիմնական օրենքից (Նյուտոնի երկրորդ օրենք)։ Մասնավորապես, z անարժ առանցքի շուրջը պտտվող պինդ մարմնի համար ստացվում է Izε = Mz, որտեղ Iz-ը մարմնի իներցիայի մոմենտն է z առանցքի նկատմամբ, ε-ը՝ անկյունային արագացումը, Mz-ը՝ պտտող մոմենտը, որը հավասար է մարմնի վրա ազդող բոլոր ուժերի մոմենտների (z առանցքի նկատմամբ) գումարին։ Մեխանիկական համակարգերի շարժումներն ուսումնասիրվում են նաև դինամիկայի ընդհանուր թեորեմներով, որոնք ստացվում են Նյուտոնի երկրորդ և երրորդ օրենքներից։ Դրանցից են․ զանգվածների (կամ իներցիայի) կենտրոնի շարժման, շարժման քանակի մոմենտի, կինետիկ Էներգիայի փոփոխման թեորեմները։ Դինամիկայի խնդիրների լուծման համար Նյուտոնի երկրորդ օրենքի փոխարեն հաճախ օգտագործում են մեխանիկայի սկզբունքները, ինչպես նաև դրանցից ստացվող շարժման հավասարումները, մասնավորապես Լագրանժի հավասարումները։ Նյուտոնի երկրորդ օրենքը և դրանից ստացվող բոլոր հետևանքները ճիշտ են միայն հաշվարկման իներցիալ համակարգերում, իսկ հաշվարկման ոչ իներցիալ համակարգերում ճիշտ կլինեն միայն այն դեպքում, երբ հաշվի ևն առնվում նաև տեղափոխման և Կորիոլիսի՝ իներցիայի ուժերը։ Այդպիսի խնդիրներ են առաջանում, երբ հետազոտվում է Երկրի պտտման ազդեցությունը մարմինների (Երկրի մակերևույթի նկատմամբ) շարժումների վրա։ Դինամիկաում քննարկվում են նաև հատուկ խնդիրներ, գիրոսկոպի տեսություն, շարժման կայունության տեսություն, մեխանիկական տատանումների տեսություն, հարվածի տեսություն ևն։ դինամիկայի օրենքները կիրառվում են միայն հոծ միջավայրերի շարժումներն ուսումնասիրելիս, ընդ որում, կախված միջավայրի հատկություններից՝ տարբերում են․ նյութական կետի և նյութական կետերի համակարգի դինամիկա, պինդ մարմնի դինամիկա, փոփոխական զանգվածով մարմնի դինամիկա, դեֆորմացվող մարմնի դինամիկա, հեղուկի և գազի դինամիկա․։ Կոնկրետ մարմինների նկատմամբ դինամիկայի մեթոդների կիրառման շնորհիվ առաջացել են երկնային մեխանիկան, բալիստիկան, հրթիռի դինամիկան և այլն։

Նյուտոնի երեք օրենքները[խմբագրել | խմբագրել կոդը]

1. Ամեն մի մարմին շարունակում է պահպանել դադարի կամ հավասարաչափ ուղղագիծ շարժման վիճակը, քանի դեռ հարկադրված չէ փոփոխել այդ վիճակը կիրառված ուժերի ազդեցությամբ։{\displaystyle \sum \mathbf {F} =0\;\Rightarrow \;{\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0.}\sum \mathbf{F} = 0\; \Rightarrow\; \frac{\mathrm{d} \mathbf{v} }{\mathrm{d}t} = 0.

2. Շարժման քանակի փոփոխությունը հակադարձ համեմատական է մարմնի զանգվածին և ուղիղ համեմատական է կիրառված շարժիչ ուժին և տեղի է ունենում այն ուղղի ուղղությամբ, որով ազդում է ուժը։ Ըստ արդի մեխանիկայի պատկերացումների առաջին և երկրորդ օրենքներում մարմին ասելով, պետք է հասկանալ նյութական կետ, իսկ շարժում ասելով՝ շարժում հաշվարկման իներցիալ համակարգի նկատմամբ։{\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},}\vec{a} = \frac{\vec{F}}{m},որտեղ {\displaystyle {\vec {a}}} — մարմնի արագացումն է, {\displaystyle {\vec {F}}} — մարմնի վրա կիրառված ուժը, իսկ {\displaystyle \ m}\ m — նյութական կետի զանգվածը։

3. Ազդումը միշտ ունի հավասար և հակադիր հակազդում, այլ կերպ, երկու մարմինների փոխազդեցությունները միմյանց հավասար են և հակառակ ուղղված։

Մարմնի վրա գործող որոշ ուժերի բանաձևեր[խմբագրել | խմբագրել կոդը]

  • Տիեզերական ձգողականության ուժ`

{\displaystyle F_{T}={Gm_{1}m_{2} \over r^{2}}}{\displaystyle F_{T}={Gm_{1}m_{2} \over r^{2}}}

կամ վեկտորային նկարագրություն:{\displaystyle {\overrightarrow {F_{T}}}({\vec {r_{1}}})=G{\frac {m_{1}m_{2}}{|{\vec {r_{2}}}-{\vec {r_{1}}}|^{3}}}{({\vec {r_{2}}}-{\vec {r_{1}}})}}{\displaystyle {\overrightarrow {F_{T}}}({\vec {r_{1}}})=G{\frac {m_{1}m_{2}}{|{\vec {r_{2}}}-{\vec {r_{1}}}|^{3}}}{({\vec {r_{2}}}-{\vec {r_{1}}})}}

երկրի մակերերևույթի մոտ:{\displaystyle {\overrightarrow {F_{T}}}=m{\vec {g}}}{\displaystyle {\overrightarrow {F_{T}}}=m{\vec {g}}}

  • Շփման ուժ`

{\displaystyle F_{f}=\mu N}{\displaystyle F_{f}=\mu N}

  • Արքիմեդի ուժ`

{\displaystyle F_{A}=\rho gV}{\displaystyle F_{A}=\rho gV}

Կինեմատիկա

Կինեմատիկա (հուն․՝ κινειν — շարժում), մեխանիկայի բաժին, որն ուսումնասիրում է մարմինների շարժումների երկրաչափական հատկությունները, առանց մարմինների զանգվածներն ու դրանց վրա ազդող ուժերը հաշվի առնելու։ Դասական մեխանիկայում դիտարկվում է մակրոսկոպիկ մարմինների՝ լույսի արագությունից փոքր արագություններով շարժումների կինեմատիկան։ (Լույսի արագությանը մոտ արագություններով շարժումների Կինեմատիկայի մասին տես Հարաբերականության հատուկ տեսություն, իսկ միկրոմասնիկների շարժումների մասին՝ Քվանտային մեխանիկա)։

Կինեմատիկայում սահմանվող մեթոդներն ու առնչություններն օգտագործվում են շարժումների կինեմատիկական հետազոտություններ կատարելիս, ինչպես նաև դինամիկայի խնդիրներ լուծելիս։ Կախված ուսումնասիրվող մարմնի հատկություններից՝ տարբերում են կետի Կինեմատիկապինդ մարմնի Կինեմատիկաանընդհատ փոփոխվող միջավայրի (դեֆորմացվող մարմինհեղուկգազ) Կինեմատիկա։ Ցանկացած մարմնի շարժումը Կինեմատիկայում ուսումնասիրում են մեկ ուրիշ մարմնի (հաշվարկման մարմին) նկատմամբ, որի հետ կապում են հաշվարկման համակարգ (x, y, z առանցքների համախումբը), որի նկատմամբ ժամանակի յուրաքանչյուր պահին որոշում են շարժվող մարմնի դիրքը։ Կինեմատիկայի հիմնական խնդիրն է տալ կետի կամ մարմնի շարժման հավասարումները և որոշել շարժման համապատասխան կինեմատիկական բնութագրերը (հետագիծ, շարժվող կետի արագություն ու արագացումպտտվող մարմնի անկյունային արագություն ու արագացում և այլն)։

Ուղղագիծ հավասարաչափ շարժման

Կետի շարժումը տրվում է բնական, կոորդինատային և վեկտորական եղանակներով։

  1. Բնական եղանակն օգտագործվում է, երբ հաշվարկման ընտրված համակարգի նկատմամբ հայտնի է կետի հետագիծը։ Կետի դիրքը որոշվում է հետագծի վրա ընտրված հաշվարկման Օ սկզբնակետից s=OiM հեռավորությամբ, որը չափվում է հետագծի աղեղով և վերցվում համապատասխան նշանով։ Շարժման օրենքը տրվում է s = f(t) հավասարումով, որն արտահայտում է s-ի կախումը է ժամանակից։ Այդ կախումը կարող Է տրվել նաև գրաֆիկի կամ աղյուսակի միջոցով։
  2. Կոորդինատային եղանակի դեպքում հաշվարկման համակարգի նկատմամբ կետի դիրքը որոշվում Է երեք կոորդինատներով, օրինակ, x, y, z ուղղանկյուն դեկարտյան կոորդինատներով, իսկ շարժման օրենքը տրվում Է
  • x = f1(t),
  • y = f2(t),
  • z= f3(t)

երեք հավասարումներով։

  1. Վեկտորական եղանակի դեպքում հաշվարկման համակարգի նկատմամբ կետի դիրքը որոշվում Է r շառավիղ-վեկտորով, որը տարվում Է հաշվարկման սկզբնակետից մինչև շարժվող կետը, իսկ շարժման օրենքը տրվում Է r=r (t) վեկտորական հավասարումով։ Կետի հետագիծը r վեկտորի հոդոգրաֆն Է։

Պինդ մարմնի շարժումը տալու եղանակները կախված են շարժման տեսքից, իսկ շարժման հավասարումների թիվը՝ մարմնի ազատության աստիճանների թվից։ Պարզագույններից են պինդ մարմնի համընթաց շարժումը և անշարժ առանցքի շուրջը պտտական շարժումը։ Համընթաց շարժման դեպքում մարմնի բոլոր կետերը շարժվում են միատեսակ՝ միևնույն հարթությանը զուգահեռ, իսկ շարժումը տրվում և ուսումնասիրվում Է այնպես, ինչպես նյութական կետինը։ z անշարժ առանցքի շուրջը պտտական շարժման դեպքում մարմինն ունի ազատության մեկ աստիճան, մարմնի դիրքը որոշվում Է պտտման <p անկյունով, իսկ շարժման օրենքը տրվում ՝ է

{\displaystyle {\mathsf {\Leftarrow s=f(t)\Rightarrow }}}{\mathsf  {\Leftarrow s=f(t)\Rightarrow }}

հավասարումով։ Հիմնական կինեմատիկական բնութագրերն են {\displaystyle {\omega }}{\omega } անկյունային ɛ̯ արագացումը։ {\displaystyle {\omega }}{\omega } և ɛ̯ մեծությունները պատկերվում են պտտման առանցքով ուղղված վեկտորներով։ Իմանալով {\displaystyle {\omega }}{\omega }-ն և ɛ̯-ը՝ կարելի Է որոշել մարմնի ցանկացած կետի արագությունն ու արագացումը։ Ավելի բարդ է մեկ անշարժ կետ (ազա տության աստիճանների թիվը երեք Է) ունեցող մարմնի շարժումը։

Հաշվարկման համակարգի նկատմամբ մարմնի դիրքը որոշվում Է երեք անկյուններով, իսկ շարժման օրենքը՝ ժամանակից այդ անկյունների կախումն արտահայտող ֆունկցիաներով։ Հիմնական կինեմատիկական բնութագրերն են մարմնի ակնթարթային անկյունային արագությունը {\displaystyle {\omega }}{\omega }-ն և ɛ̯’ ակընթարթային անկյունային արագացումը։ Մարմնի այս շարժումը ստացվում Է որպես Օ անշարժ կետով անցնող և իրենց ուղղությունն անընդհատ փոփոխող OP պտտման ակնթարթային առանցքների շուրջը տարրական պտույտների հաջորդականություն։ Ամենաընդհանուրն ազատության վեց աստիճան ունեցող ազատ պինդ մարմնի շարժումն Է։ Մարմնի դիրքը որոշվում Է իր որևէ կետի (բևեռ) երեք կոորդինատներով և երեք անկյուններով։

Շարժման օրենք[խմբագրել | խմբագրել կոդը]

արագացումv²/r, ուղղված կենտրոնի

Շարժման օրենքը տրվում է վեց հավասարումներով, որոնք արտահայտում են նշված կոորդինատների և անկյունների կախումը ժամանակից։ Մարմնի շարժումը որոշվում է որպես բևեռի հետ համընթաց շարժման և այդ բևեռի շուրջը պտտական շարժման գումար։ Հիմնական կինեմատիկական բնութագրերն են համընթաց շարժման արագությունն ու արագացումը (հավասար են բևեռի արագությանն ու արագացմանը) և բևեռի շուրջը մարմնի պտտման անկյունային արագությունն ու անկյունային արագացումը։ Կինեմատիկայում ուսումնասիրում են նաև կետի կամ մարմնի բարդ շարժումը, որը դիտարկվում է միաժամանակ երկու միմյանց նկատմամբ փոխադարձաբար տեղաշարժվող հաշվարկման համակարգերի նկատմամբ։ Հաշվարկման համակարգերից մեկն ընդունում են հիմնական (անվանում են նաև պայմանականորեն անշարժ), իսկ դրա նկատմամբ շարժվողը՝ շարժական։ Բարդ շարժման դեպքում հաշվարկման հիմնական համակարգի նկատմամբ կետի շարժումը, արագությունն ու արագացումը պայմանականորեն կոչվում են բացարձակ, իսկ շարժական համակարգի նկատմամբ՝ հարաբերական։ Հաշվարկման շարժական համակարգի և դրա հետ կապված տարածության բոլոր կետերի շարժումը հիմնական համակարգի նկատմամբ կոչվում է փոխադրական շարժում, իսկ դիտարկվող կետի հետ տվյալ պահին համընկնող շարժական համակարգի կետի արագությունն ու արագացումը՝ փոխադրական արագություն և փոխադրական արագացում։ Բարդ շարժման Կինեմատիկայի հիմնական խնդիրն է կապ հաստատել կետի կամ մարմնի բացարձակ, հարաբերական և փոխադրական շարժումների կինեմատիկական բնութագրերի միջև։ Հոծ միջավայրի կինեմատիկայում սահմանվում են այդ միջավայրի շարժման տրման եղանակները, դիտարկվում է դեֆորմացիայի ընդհանուր տեսությունը, և արտածվում են անխզելիության հավասարումները, որոնք արտահայտում են միջավայրի անընդհատության պայմանները։

Թողնել պատասխան

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Փոխել )

Google photo

You are commenting using your Google account. Log Out /  Փոխել )

Twitter picture

You are commenting using your Twitter account. Log Out /  Փոխել )

Facebook photo

You are commenting using your Facebook account. Log Out /  Փոխել )

Connecting to %s